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l. Introduction and Abstract

By a cell we mean either a nonempty closed polyhedral convex
set or a nonempty closed solid ball. Our concern is with solving as
linear or convex quadratic programs special cases of the following

two problems.

Optimal Containment Problem (OCP):

et . & Ve a finite union of cells and % a finite intersection
of cells. Find the smallest positive scale s% of % for which
some translate sa + t contains 2.

infimum: s

OCP 8,%
subject to: sz + t 2 &, §>0.

Optimal Meet Problem (OMP):

,: let & and @/q for g =1, «eo 5, P, be each an intersection
of cells. Find the smallest positive scale s@& of Z for which
some translate s2' + t meets every ?_l/q for =1, ¢.. 5 P.

infimum: s
8,t

OMP ~
subject to: (s +t) N ?/q#@, Q = 1lyeee,D §>0.

The general OCP and OMP are well beyond our reach but serve as
useful overviews. Depending upon the compositon of the &X''s and
¥'s as unions and intersections of cells and the representation of
the cells we can or cannot forrmulate the problems as linear or convex

quadratic programs.
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Our initial interest in OCP and OMP originated with "engineering
design" through interior solution concepts for convex sets, see van der

Vet [9 ] and Director and Hachtel [ 1]; also see Eaves and Freund [ 2 ],

2. Preliminaries

Most of the notation we use is standard. Let IR® be n-dimen-
sional Euclidean space. By |||| s Wwe mean the Euclidean norm. x - y
and X oy represent inner and cuter product, respectively. ILet
e=(1,1, ..., 1) where its length is dictated by context. We define
inf ¢ = + © ag usuval, but sup ¢ 4 0 for the purposes of our presen-

tation. By a convex program we mean a program of the form

minimum: f£(x)
P x

subject to: g,(x) <0, i=1, oo, m,
where all f, g; are convex functions, and m is finite. If, in
addition, each g, 1is affine, f(x) =xQx +q * x, and Q is
positive semi-definite, then we call P a quadratic program. Further-
more, if Q 1s 2ero, then we call P a linear program.

let 5 bea set in IR'. We denote by tng(3) the smallest

vector subspece of R® for which same translate contains 3. We

denote by rec(3) the recession set of 3 , that is, the set
(z e B3 x €7 such that x +az e 3 for any a >0} .

We also make use of the following variation of Farkas®' Lemma.
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" Lemma: Suppose that the system of inequalities

Ax <D

has a solution and that every solution satisfies cx < d. Then there

exists A >0 such that M =c and A< d.

The manner in which cells are represented is crucial to our
formulations., We assume all cells are in IRn. We define an H-cell

to be a cell of the form
(x|ax < v}

as it is represented by half-spaces; it is assumed (A,b) is given.

A cell of the form
(xlx=tn+Vp:ex=1,2>0, u>0}

is defined to be a W-cell as it is a weighting of points; it is assumed
(u,v) is given. Of course, every H-cell can be represented as a W-

~ cell and vice versa. However, we shall suppose, and typically rightly
80, that the computational burden of the conversion is prohibitive,

see Mattheiss and Rubin [8] for H to W. Thus we shall regard H-

and W-cells as quite distinct. A B-cell is defined to be the ball
(x| lle -xll <x};

it is assumed that the center ¢ and radius r > 0 are given,




et 5" be a cell, and let 5> 0 be a scale of 5 and
t a translate. If F is an H-cell, (x|Ax < b}, then
sg+t=(xlAx<bs+at), If 3 isa B-cell, (x| flc -l <rl,
85 t+tt= (x| (sc +t) - xl <sr). Andif 3 isa W-cell,
(x|lx=UN+ Vs, e =2, >0, u>0}, then sy +t
= (xlx = (sU+ toe)\ + Vu, ex = 1, A >0, # >0} or equivalently
sgtt=(xlx=t+Un+Vu en=s, 120, >0l

To describe speclal cases of OCP and OMP we shall use notation
as, for example, (HBl, WB=)' which denotes that @ is composed of
any finite number of H-cells and one B-cell, and that % or each
g?/q are composed of any number of W-cells and B-cells but all B-cells
have the same radius. If B is not subscripted by "=" or "17,
then any finite number may be employed and the radii may vary. Thus,
again, for example, (HWB, HWB) describes the most general case of
OMP or OCP.

Consider the following three programs

vl = infimum: s

() st
subject to: |w, - (se +t)| +a<sr, 1=, ..., m.

Vo = infimum: ¢£

(@2) f,x 2
subject to: Ilwi - x" <f, i=1, ..., m.

v3=infimm: XeX -8

(3) &,%

subject to: wi-wi-Qwi-x+a50, i=1, ..., m.




Assuming r is non-zero, we show that solving any one yields

solutions to the other two. Let V"_ denote nonnegative square root.

Equivalence of (Q1) and (Q2): If (s,t) and (s,t) are

feasible for (Ql) with s < s (respectively: s < s), then

(£,%x) = ((sr + d)2, sc +%) and (f,x) = ((sr + d)a, sc +t) are k

feasible for (Q2) with T < £ (respectively: f< f). If (F,%) E'
and (f,x) are feasible for (Q2) with F < £ (respectively:
£<f), then (5,%) = (W + a)/r, X -sc) and (s,t) = ‘
((\/£ + a)/r, x - sc) are feasible for (QL) with 5 < s (respectively: {'
s <s). '

Equivalence of (Q2) and (Q3): If (f,x) and (£,x) are feasible ;

for (Q2) with T < f (respectively: f < f), then (2,x) (X*x-f, X)
and (a,x) = (x « x = f, x) are feasible for (Q3) with X + X - &
=f<xex-a=7f (respectively: x - X-a=f<xex-a=f).
It (a,x) and (a,x) are feasible for (Q3) with X*X - 2 < XX - a

(respectively: x « x -a<x+x-a), then (Fx) =(X * X - a, %)

and (f,x) = (x * x - a, x) are feasible for (Q2) with T =x - x - a

<f=x-x-a (respectively: f=Xe+x-a<f=x-x~a).

t
We thus have the following result 7 l
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lemma 2.1 (Equivalence of (Q1) and (Q3)): For r non-zero

(1) If (s,t) is feasible or optimal for (Ql), then (a,x)
((se +t) » (sc +t) - (sr - d)2, sc + t) 1is feasible

or optimal for (Q3), respectively.

(i1) 1If (a,x) is feasible or optimal for (Q3), then (s,t)

((@a+yx-x-alfr, x=~(da+ Vx - x -ale/r) is

feasible or optimal for (Ql), respectively. ]

Consequently (Ql) can be solved via the quadratic program

(Q3). Note that (Q3), and hence (Ql), always has a unique optimal

solution.

3. The Optimal Containment Problem (OCP)

Iet & bve a finite union of cells and '@% be a finite inter-

section of cells., The optimal containment problem can be written as:

Z, = supremum: s
1
OCP1 S,%
subject to: s+t C a, s>0

or as

22 = infimm: s
oCcP2 s,t

subject to: &C s +t, s8>0,
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Our first results concern the equivalence of OCP1L and OCP2.

(i1)

(iii)

(iv)

(i)

Iemma 3.1 (Equivalence of OCPL and OCP2):

(Solmtions) (s,t) is a feasible or optimal solution to

OCP1 if and only if (1/s, ~t/s) is a feasible or optimal

solution to OCP2.

(Feasibility) The following are equivalent:

(a) OCP1 is feasible
(b) OCP2 is feasible

(e) tng(2) C tng(¥) and rec() C rec(®).
(Attainment) The following are equivalent:

(a) o< z, < 4+ o (c) OCP1L has an optimum

() o< 2y <+ (d) OCP2 has an optimum.

(Non-a.ttainment) The following are equivalent:

() 2
(b) =z

1=+®

0

n

2
(c) @&+ tCrec(®%) for some translate t.

For a specific realization of OCP1 or OCP2, & and %

will be given in the forms

e o
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1]

[u Julu wjulu B.]
heaHh iep * jer ¢

(3
N

[N In{n win[n B1,
keka Eec‘e me‘rm

where H(.) = (xlA(.)x Sb(_)}, W(.) = (x]x = U(.)x + V(.)p, ex =1,
A>0,u>0}, and B(.) = (x| IIc(.) -xl < r(.)}. For a given set
H(.) = [xIA(_)x Sb(')}, we define a(.) to be the column vector
whose qth component is the (Euclidean) norm of the qth row of A(.).
We begin with case (HWB, H) of OCP which corresponds to
c=¢ and T = ¢, that is, X is & union of any finite number of

H-, W-, and B- cells and % is an intersection of H-cells.

Case (HWB, H) of OCP is a linear program

We treat the optimal containment problem (HWB, H) through

0CP2. The formulation as a linear program is

2" s,t,A

subject to: AhkAh = Ak hea, kep
Ahkbhsbks-l-Akt hea, kep
AkUi.Sbks+Akt iea,kép
alv,)<o 1eB,kep

+
Akcj akrjf_bks +Akt Jer, kep

Ny > O hea, kep

s>0.

10
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Note that case (Bl, H) of OCP, a special case of (HWB, H), is

P
2

the well-known problem of finding the largest ball inscribed in an

H-cell, and has been part of the folklore of linear programming for

over a decade.

Case (W, HW) of OCP is a linear program

—— -
RN . T

Formulated through OCPl, we have: t

>

4

zl = maximum : s !Lj

s,t,A,m,Q 'j

subject to: SUi + toe = UZAiz + Vznu iepB,Leo |4

Vi = VR, ieB, Lea t

!

A.K(sUi + toe) < b oe ieB,kep :

|

AV, ) <o ieB, kep 5
el\u=e,l\uzo,nizzo,ﬂuzo ieB,Leo

|

s>0. 3

Case (Bl, B) of OCP is a quadratic program %

let (c,r) be the given center and radius of the ball Q. H

Treating the optimal containment problem through OCPl, we have:

z, = maximum: s -
s,t 11

subject to: "cm - (sc +t) +sr< r. ne-rt :

s§>0.,




If ¥4 # ¢, i.e., the intersection of the an is not empty, then

the constraint s > O is superfluous, and can be dropped. Since all

r, eare equal, the above program is seen to be an instance of (Ql) and

_ hence can be solved vie the quadratic program (Q3). Note that if
the optimal solution to the program (Q3) returns a negative value
of s, then ¥ = ¢. A variation of this problem was first shown

to be a quadratic program by Gale [ 4 ].

Case (B_, Bl) of OCP is a quadratic program

Here we let (c,r) be the given center and radius of the ball
¥ . Formulated through OCP2, the optimal containment problem is
written as

z, = minimum: s
S,t

subject to: "cJ -(sc + t)]| + r < sr jey
§>0.

Note that the constraint s > O is superfluous, and can be omitted.
As this program is a realization of (Ql), it is solvable as the
quadratic program (Q3) for r > 0.

The special case of (B=’Bl) where all r, = 0 1is the problem

J
of finding the smallest ball covering the points ¢ 52 jJ € 7y and has

been treated by Elzinga and Hearn [3] and Kuhn [7].
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The case (W, Bl) of OCP is a quadratic program

(w, Bl) of OCP is a special case of (B, Bl) just discussed

when rec(2) = (¢ ) (else OCP is infeasible), since all V, = O and

i
each column of the Ui can be considered as the center of a B-cell

with radius zero. Thus (W, Bl) of OCP 1is solvable through the

quadratic program (Q3).

Other cases of OCP

Cases (WB, HB) and (W, HWB) of OCP can be formulated as
convex programs using the logic already employed; however, we have been
unable to formulate either case as a quadratic or linear program. As
regards all other cases of OCP, we are convinced that their formu-
lation as a convex program, much less a quadratic or linear program,

cannot be accomplished. The reason for this is that the problem of

testing oy € %, vhere either (1) @2 is an H-cell and ¥ is a
Wecell, (ii) & 4is an H-celland @ 1is a B-cell, or (iii) 2 is
a Becell and % is a W-cell, appears to be intractable without

conversion of the polyhedra from H-cell to W-cell or vice versa.

4, The Optimal Meet Problem (OMP)

Let 27 and gl/q, q=1, ..., P, each be a finite intersection
of cells. The optimal meet problem can be written as:

vl = infimum: s
s,t

oMP1 subject to: (sgr+ t) N zr/q £ ¢ Q=1 eee, P,

s> 0

or

13
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Vv,

p = supremum: 8

s,t
oMP2 subject to: an(s;,,q+t)¥o Q=1, eeey P,

s8> 0.

The following result concern the equivalence of OMP1 and OMP2,

Lemma 4,1 (Equivalence of OMP1 and OMP2):

(1) (Solutions) (s,t) is a feasible or optimal solution to
OMP1 if and only if (1/s, -t/s) 1is a feasible or optimal

solution to OMP2,
(i1) (Feasibility) The following are equivalent:

(a) OMP1 1is feasible
(b) OMP2 4is feasible
(c) For some translate t, (t + tng(&)) N ¥, £ o,

Q=1, o0, P
(111) (Attainment) The following are equivalent:

(a) 0< v, <e (c) OMP1 has an optimum
(bp) 0< v, < (d) OMP2 has an optimum.

(iv) (Non-attainment) The following are equivalent:

(a) v, =0
(b) v2:+oo

(c) For some translate t, (rec() + t) N ¥, Fo,

q’l, seesy P o

1k

-




For a specific realization of QfP1 or OMP2, 4@ and 9q

will be given in the form:

e [N HIN[N WIN[N B,)
heaHh 1eﬁi Je‘rj

y ={ N In( n w, 10 N B ] =1, veey Py
q h"kq P lq m 1 ’

o T
kqepq qe a mqe a q

where H(.), W(.) and B(') are as in gsection 3. Our solvable cases

are as follows.

Case (HW, HW) of OMP is & linear program

Treated through OMPL, case (KW, HW) is the linear program:

vl- minimum : 8

ﬂ’t’x,h’u
subject to: Ahxq < bha + A.nt hed, qg=1,ee.,pP
A‘k x < b k €p.» qQ = l,-o-,p
-k
q Q q q q
xq-t+ui}‘iq+ viuiq ieB,q=1,...,p
x = U A +V 4y 2 €0 qQq = l,.oo P
12 I A | ’ ’
T 4% % 1
= > > =
ekiq 8, kiq_ ol 0, uiq -O ie ﬂ, q 1,...,P
ekl = 1, k‘ ?_ 0, u-z 2 0 lq € Uq, q = lp-onyp

q q q

§>0.




Case '(Bl, Bl=) of OMP is a quadratic progran

This is the case where each ﬁh is a ball of given center cq
and radius rq with rl = see = rq > 0. Let <" be the ball with
center ¢ and positive radius r, and we proceed through OMP1.

The formulation is

v, = minimum: s
1
s,t

subject to: "cq - (sc +t)] <sr+ Ty’

Q=1) ¢ee, P

P
Ir N Yy =0 (otherwise OMP does not attain its minimum), then
q=1

the constraint s > 0 is superfluous and can be amitted., Furthermore,
since all rq are equal, the above program is an instance of (Q1)

and hence can be solved via the quadratic program (Q3).

Other cases of OMP

Note that the most general cagse of OMP, namely (HWB, HWB),
can be formulated as a convex program using the logic employed herein.
However, we have been ungble to formulate any case of OMP other than

the above two cases as a quadratic or linear program.




5. Remark
Our final remark concerns the interrelated issues of computational !
) complexity, the conversion of H- to W-cells and vice versa, and our
division of problems solvable as quadratic or linear programs from ;
other convex programs. In [5] and [6], it is shown that linear and
(convex) quadratic programs are solvable in polynomial time. The

conversion of an H- to Wecell, or vice versa, is an exponential problem.

ey v - w - -

To see this, consider the sets ¢ & (x ¢ R"| llxlle <1} ana
@ Alxe R?| ”x“l <1). ¢, as an H-cell, can be represented by .':
2n halfspaces, but as a W-cell it requires the enumeration of at
least 2" (extreme) points. @ , as a W-cell, can be represented

by 2n (extreme) points, but as an H-cell it requires the emumeration ' }.

of at least 2" halfspaces. We thus see that our distinction of
H-cells and W-cells as different entities is consistent from the
standpoint of the solvability of the quadratic and linear programs

contained herein.
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